Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©ÇÑ ÀÓÇöõÆ® ÁÖº¯°ñ¿¡¼­ÀÇ ÇÏÁß ºÐÆ÷¿¡ °üÇÑ À¯ÇÑ¿ä¼ÒºÐ¼®¹ýÀû ¿¬±¸

Finite Element Analysis of Stress Distribution around the Micro-Patterned Implants

Çã¹è³ç, ±è´ë°ï, ¹ÚÂùÁø, Á¶¸®¶ó,
¼Ò¼Ó »ó¼¼Á¤º¸
Çã¹è³ç (  ) - °­¸ª´ëÇб³
±è´ë°ï ( Kim Dae-Gon ) - °­¸ª´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç
¹ÚÂùÁø ( Park Chan-Jin ) - °­¸ª´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç
Á¶¸®¶ó ( Cho Lee-Ra ) - °­¸ª´ëÇб³ Ä¡°ú´ëÇÐ Ä¡°úº¸Ã¶Çб³½Ç

Abstract

°ñÁ¶Á÷ÀÌ ÀÚ¶ó µé¾î°¥ ¼ö ÀÖ´Â ÀûÀýÇÑ Å©±âÀÇ ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©ÇÏ¸é °­ÇÏ°í Áö¼ÓÀûÀÎ °ñÀ¯ÂøÀ» ÀÌ·ê ¼ö ÀÖ´Â »ý¿ªÇÐÀû °áÇÕÀ» ÀÌ·ê ¼ö ÀÖ´Ù. ¶ÇÇÑ ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ÅëÇØ °ñÁ¶Á÷°ú Á¢ÃËÇÏ´Â ¸éÀûÀ» Áõ°¡½ÃÅ´À¸·Î½á ÇÏÁßÀ» ÀûÀýÈ÷ ºÐ»ê½Ãų ¼öµµ ÀÖ´Ù. º» ¿¬±¸¿¡¼­´Â ¸¶ÀÌÅ©·ÎÆÐÅÍ´×ÀÇ ÇüÅÂ¿Í Å©±â¿¡ µû¸¥ ÀÀ·ÂÀÇ ºÐ»ê¿¡ ´ëÇØ ¿¬±¸ÇÏ¿´´Ù. ³ª»ç Çϳª¿¡¼­ÀÇ ÇÏÁßÀ» ¿¬±¸Çϱâ À§ÇØ 2Â÷¿ø À¯ÇÑ¿ä¼ÒºÐ¼®¹ýÀ» ÀÌ¿ëÇÏ¿´´Ù. ÀÓÇöõÆ®´Â ¹«ÇÑÈ÷ ±ä ÇÇÁú°ñ¿¡ 100% Á¢ÃËÇÏ¸ç °ñ-ÀÓÇöõÆ® °è¸éÀº °íÁ¤µÈ °ÍÀ¸·Î °æ°èÁ¶°ÇÀ» ¼³Á¤ÇÑ ÈÄ ¸¶ÀÌÅ©·ÎÆÐÅÍ´×ÀÇ À§Ä¡¿Í ¼ö¿¡ µû¶ó 5±ºÀ¸·Î ³ª´©¾î Ãà·ÂÀ» °¡ÇÑ ÈÄ ÃÖ´ëÀÀ·Â°ú ÀÀ·ÂÀÇ ºÐ»ê¾ç»óÀ» ºñ±³ÇÏ¿´´Ù. ¿¬±¸ °á°ú, ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©Çϸé ÀϹÝÀûÀÎ ³ª»ç¿¡ ºñÇØ ÀÀ·ÂÀ» º¸´Ù ³Ð°Ô ºÐ»ê½ÃÄ×À¸¸ç ³ª»çÀÇ ÇϹ濡 ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©ÇÑ °ÍÀÌ »ó¹æ¿¡ ºÎ¿©ÇÑ °Íº¸´Ù ´õ °í¸£°Ô ÀÀ·ÂÀ» ºÐ»ê½ÃÄ×´Ù. 3°³ÀÇ ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©ÇÑ ±ºÀÌ 2°³ÀÇ ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©ÇÑ ±º¿¡ ºñÇØ ÀÀ·ÂÀ» ³Ð°Ô ºÐ»ê½ÃÄ×À¸³ª ÀÀ·ÂÀÌ ÁýÁߵǴ ºÎÀ§°¡ ³ªÅ¸³µ´Ù. ÀÌ»óÀÇ °á°ú¸¦ ÅëÇØ ¸¶ÀÌÅ©·ÎÆÐÅÍ´×À» ºÎ¿©Çϸé ÀÀ·ÂÀÇ ºÐ»êÈ¿°ú°¡ ÀÖÀ¸¸ç ƯÈ÷ ³ª»ç ÇϹ濡 ºÎ¿©ÇÏ´Â °ÍÀÌ ´õ Å« È¿°ú¸¦ ³¿À» ¾Ë ¼ö ÀÖ¾ú´Ù.

Implant requires long lasting, strong osseointegration using bio-mechanical interlocking by bone ingrowth. In regarding the size level for bone ingrowth, the micro-patterning would enhance bone response. Micro-patterning can increase the area contacting the bone tissues. Therefore, it may distribute the load to the surrounding bone tissue, more effectively. This study compared and analyzed the load distributing effect with the shape and number of micro-patterning. For the optimal comparison of threads, the assumptions different from general finite element analysis model were made. It was assumed that the implant was axisymmetric and infinitely long. The implant was assumed to be completely embedded in the infinitely long cortical bone and to have 100% bone apposition. The implant-bone interface had completely fixed boundary conditions and received an infinitely big axial load. The condition of threads were as follows. The reference model 1 had conventional thread. Model 2 had 2 micro-patterns on the upper flank of the thread. Model 3 had 2 micro-patterns on the lower flank of the thread. Model 4 had 2 micro-patterns on the upper and lower flanks of the thread. Model 5 had 3 micro patterns on the upper and lower flanks of the thread. The results were as follows: 1. The thread with micro-patterns distributed stress better than the conventional thread. 2. The thread with micro-patterns on the lower flank distributed stress better than that with micro-patterns on the upper flank. 3. The thread with 3 micro-patterns distributed stress better than that with 2 micro-patterns, However, an area with stress concentration occurred.

Å°¿öµå

bone ingrowth;finite element analysis;implant;load distribution;micro-patterning

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

µîÀçÀú³Î Á¤º¸

KCI